New bounds on the expected length of one-to-one codes

نویسندگان

  • Carlo Blundo
  • Roberto De Prisco
چکیده

In this correspondence we provide new bounds on the expected length L of a binary one-to-one code for a discrete random variable X with entropy H. We prove that L H ? log(H + 1) ? H log(1 + 1=H). This bound improves on previous results. Furthermore, we provide upper bounds on the expected length of the best code as function of H and the most likely source letter probability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An approach to fault detection and correction in design of systems using of Turbo ‎codes‎

We present an approach to design of fault tolerant computing systems. In this paper, a technique is employed that enable the combination of several codes, in order to obtain flexibility in the design of error correcting codes. Code combining techniques are very effective, which one of these codes are turbo codes. The Algorithm-based fault tolerance techniques that to detect errors rely on the c...

متن کامل

Trellis decoding complexity of linear block codes

AbstructIn this partially tutorial paper, we examine minimal trellis representations of linear block codes and analyze several measures of trellis complexity: maximum state and edge dimensions, total span length, and total vertices, edges and mergers. We obtain bounds on these complexities as extensions of well-known dimensiodlength profile (DLP) bounds. Codes meeting these bounds minimize all ...

متن کامل

New Bounds for Linear Codes of Covering Radius 2

The length function lq(r,R) is the smallest length of a q-ary linear code of covering radius R and codimension r. New upper bounds on lq(r, 2) are obtained for odd r ≥ 3. In particular, using the one-to-one correspondence between linear codes of covering radius 2 and saturating sets in the projective planes over finite fields, we prove that

متن کامل

Entropy/Length Profiles, Bounds on the Minimal Covering of Bipartite Graphs, and Trellis Complexity of Nonlinear Codes

In this paper, the trellis representation of nonlinear codes is studied from a new perspective. We introduce the new concept of entropy/length profile (ELP). This profile can be considered as an extension of the dimension/length profile (DLP) to nonlinear codes. This elaboration of the DLP, the entropy/length profiles, appears to be suitable to the analysis of nonlinear codes. Additionally and ...

متن کامل

A general construction of Reed-Solomon codes based on generalized discrete Fourier transform

In this paper, we employ the concept of the Generalized Discrete Fourier Transform, which in turn relies on the Hasse derivative of polynomials, to give a general construction of Reed-Solomon codes over Galois fields of characteristic not necessarily co-prime with the length of the code. The constructed linear codes  enjoy nice algebraic properties just as the classic one.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Information Theory

دوره 42  شماره 

صفحات  -

تاریخ انتشار 1996